Outline of the Design of a Cascaded H-bridge
Medium Voltage STATCOM

R.E. Betz'*, B.J. Cook¥, T.J. Summers'?, R. Fisherf, A. Bastianif, S. Shaof, P. Stepieni, K. Willis?

fSchool of Electrical Engineering and Computer Science
University of Newcastle, Australia, 2308
email:*Robert.Betz@newcastle.edu.au;
$Terry.Summers @newcastle.edu.au

fResTech Pty Ltd
University of Newcastle, Australia, 2308
email: Sinfo@restech.net.au

Abstract—The University of Newcastle and its joint ven-
ture company, ResTech Pty Ltd, are developing a cascaded
H-bridge based multilevel STATCOM. This tutorial paper
outlines the salient design issues for this system. The issues
covered in the paper include the choice of the converter
topology, the structure of the control system hardware,
the software structure and methodology, some details on
the control algorithm, and the rationale behind the design
decisions.

Index Terms—Static Synchronous Compensator (STAT-
COM), Multilevel converters, SVC Static Var Compensator,
Power Quality

[. INTRODUCTION

Static Compensators (STATCOMs) are currently a topic
of active research around the world [1]-[6] because they
promise to be a viable and high performance replacement
for the traditional thyristor based Static Var Compensator
(SVCs). STATCOMs differ from SVCs in that they em-
ploy forced commutation techniques and higher switching
frequencies compared to the line commutated SVC. The
use of higher switching frequency and forced commu-
tation gives the STATCOM several advantages over the
SVC, namely:

e« STATCOMs can respond faster to changes on the
grid as they don’t have to wait for 1/6th of the supply
cycle as the SVC does to change their output.

o They can be used for traditional displacement power
factor control, but in addition can be used as active
filters to eliminate harmonics, flicker mitigation etc.

o The higher switching frequency means that their
switching harmonics are easily filtered with modest
sized filters between the STATCOM and the grid.

o With sophisticated control STATCOMs can re-
balance unsymmetrical currents and voltages on the
grid, and even provide transient dip support in the
case of fault instigated grid disturbances.

In short, STATCOMs, by virtue of their higher switching
frequency, are able to be controlled so that virtually any
desired control objective can be achieved. SVCs are much
more restricted in application because of their low effec-
tive switching frequency due to the natural commutation
requirement of thyristors.

The topology and hardware of STATCOM s built to date
varies depending on the voltage level that they operate at.

For example, very high voltage/high power STATCOMs
are usually based on variants of GTO thyristor technology
connected to the grid via transformers [7], [8]. The
switching speeds of the devices is relatively low, with
interleaved switching techniques and intricate transformer
configurations being used to help eliminate the harmonics.

The development of power switching devices, and in
particular IGBTs, has meant that IGBT based STATCOMs
have been increasingly used at higher power levels. For
example, a large European company uses IGBT technol-
ogy for HVDC applications in the hundreds of megawatts
power range. In general, IGBT systems switch faster than
the GTO based topologies. The IGBT based STATCOMs
are usually connected to the grid via interposing trans-
formers.

In this paper we shall be considering an IGBT based
converter topology, operating at the lowest level substa-
tion distribution voltage (in Australia this is 11kV line-to-
line). Multilevel converter topologies offer the possibility
of eliminating the bulky and lossy transformer from
the STATCOM at such voltage levels. For higher volt-
age levels transformers would probably be used. Under
this circumstance the advantage of using the multi-level
technology is related to the above-mentioned harmonic
performance, and the fact that current levels in the power
electronics can be maintained at relatively lower levels.

There are three fundamental topologies of multi-level
converters:

o the neutral point (or diode) clamped converter

(NPC);

« the flying capacitor converter (FCC);

« and the cascaded H-bridge converter (CHC).

There are more multi-level topologies than this, but they
are essentially composed of various novel combinations
of these basic ones.

This paper will concentrate on the development of a
STATCOM based on the use of cascaded H-bridges for
the following reasons:

o The number of components in a multilevel CHC
topology scales linearly with the number of output
levels [5].

« High output level numbers are achievable with this
topology making a medium voltage direct connection
(i.e. no interposing transformer) STATCOM feasible.

1293
978-1-4244-1742-1/08/$25.00 (© 2008 IEEE

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

1294

o The topology is very modular which makes con-
struction, maintenance and provision of redundancy
simple.

o The topology is very suited to applications that
do not involve real power. Even though the CHC
topology was conceived for medium voltage variable
speed drives, the CHC is ideal for the STATCOM
application because it does not require real power to
be handled. This simplifies the CHC system, since a
complex input transformer is not required to supply
power to the individual H-bridges in the converter.
VAR compensation and active filtering only mostly
imaginary power to be handled, with only small
amounts of real power that can be supplied from
the grid.

ResTech Pty Ltd, a joint venture company between
Ampcontrol Pty Ltd and the University of Newcastle,
Australia, is developing a CHC direct connect STATCOM
designed for 11kV applications. A detailed block diagram
of the STATCOM system is shown in Fig. 1. The two
main functional blocks are identified by the enclosed
dashed lines. The power circuitry block consists almost
entirely of the H-bridge hardware, the circuit breakers, the
initial bridge charge control, and the associated transient
over voltage protection circuitry. The H-bridges are con-
nected together in a Wye configuration to minimise the
number of H-bridges required for direct grid connection
(although this increases their current rating).

The control hardware section of the system is quite
complex, and is based on a multi-processor architecture. A
Dual Processor PC is used as the main control computer,
and three 32 bit microprocessors are used for the voltage
control of each phase leg. This multi-processor architec-
ture creates a high degree of decoupling between different
blocks of the control algorithm. The dual processor central
computer implements the highly numerical sections of
the algorithm, whose output is the desired voltage to
be produced by each of the phase legs over the next
control cycle. The reference voltages are sent by the
dual processor central computer to each of the phase
control processors, whose function is to produce these
voltages by selecting which H-bridges to use taking into
account the voltage balancing issues for the individual H-
bridge capacitors. As far as the dual processor computer
is concerned the phase legs simply produce a desired
voltage, and there is no need for it to be involved in
the details of how this is implemented. The algorithms
for H-bridge phase balancing of the three phase legs are
independent of each other, therefore there is no need
for any communication between the phase legs, which
simplifies the communications architecture.

A design decision was made at the outset of the project
to use as much off-the-shelf electronics hardware as
possible so that the development time of the prototype
was reduced. The choice of an industrial PC for the central
control computer and Altera EPLD NIOSii development
boards for the phase controllers has turned out to be an
excellent decision in that these devices have successfully
fulfilled the roles intended in the control system, and
achieved the desired outcome of minimising the devel-
opment of custom hardware.

The remainder of this paper will look in detail at each
of the sub-sections in Fig. 1, and as well present an
overview of the control strategies to be implemented in
the system.

II. THE POWER CIRCUIT

The rationale for the choice of the CHC topology was
presented in the previous section. In this particular im-
plementation of the topology nine H-bridge modules are
connected in series for each of the Wye connected phase
legs. This means that each bridge supports approximately
1100 Volts DC, allowing the use of readily available
1700 Volt IGBTs as the power device, with reasonable
head room still available to handle grid voltage events, the
inevitable ripple on the DC link capacitor, and the voltage
headroom required for control purposes. For simplicity
reasons the prototype unit will use bond wire IGBT
modules, but in the final system a press pack variant be
considered because of the advantage that damaged press
pack IGBTs tend to become a short circuit (as compared
to open circuit for bond wire devices). Furthermore the
final system will have redundant H-bridges modules for
high reliability.

Fig. 2 shows the basic structure of a phase leg and the
constitutent H-bridge modules. One of the key require-
ments for the H-bridges were that they were completely
modular, with the only connections to the units being
optical fibres. All the internal power supplies are derived
from their own DC bus via internal high-to-low voltage
DC-DC converters. Analogue values required for the
control algorithms are sampled using on-bridge module
A/D converters, and the results are transmitted serially to
the controlling computers.

There is a four tiered protection system for the phase
legs and associated modules. The control system im-
plements a current controlled voltage source, and the
software current limits prevent large currents from being
demanded. Therefore if the control system is working
correctly over-currents should not occur. The second level
of protection are hardware programmed current limits in
the EPLD current hardware, which if exceeded trigger
a software based over-current trip. Thirdly, to back-up
the software over-current limit the individual modules im-
plement hardware instigated V3t short-circuit protection,
which in turn informs the control system of a failure
resulting in an orderly shutdown. If the third level of
protection fails, then the fourth and final layer is hardware
circuit breaker protection.

III. CONTROL HARDWARE ARCHITECTURE

Fig. 3 is a detailed block diagram of the control
hardware for the system. As mentioned previously it is de-
signed as a multiprocessor architecture. This architecture
was chosen because of the complexity of the control task
for this system. Each phase leg of the system has to be
controlled so that the capacitor voltage of each individual
H-bridge is such that the total phase voltage is evenly
distributed between the H-bridges, and at the same time

2008 13" International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

Source side

Load side

e

CONTROL HARDWARE,

Dual
Processor
Windows XP/
RTX
Control
Computer

b

DI/O IRS422

v

L] Digital

parallel /serial f—|
to |
optical interfacef=|

11

Control line key
— Serial line

Analogue to
serial

Sample

Serial
Cabinet

— Digital line

9 x_Serial lines

—— Three lines Monitoring

@ - three lines

Fig. 1. Detailed block diagram of the proposed cascaded H-bridge multilevel STATCOM.

=

Optical

Switching _
Power Eﬂ_—, interface, | [-
$ EPLD logic [1 7]

(9 cascaded H-bridges)

Fig. 2. Block diagram of the H-bridges used in the phase legs.

the overall desired output phase voltage is produced. The
production of the desired output voltage, in this particular
system, involves using PWM switching for one of the
H-bridges in the H-bridge chain. Since the information
to carry out these tasks only becomes available towards
the end of the control cycle, considerable processing
power has to be employed to achieve the this in the time
allowed. This is the task of the phase controllers. As
mentioned above, the calculation of the desired voltage
sent to each of the phase controllers is undertaken in
the central control PC, and it does not need to know
the details of how this voltage is produced by the phase
controller.

The distributed computing architecture requires effi-
cient communications between the key processing units.
High speed optical serial communications (3Mbits/sec) is

used for sending measurements and commands between
the processing units.

The phase leg processors are implemented using Altera
NIOSii Development Boards which incorporate the Altera
Cyclone EPLD. This approach was chosen because a full
32 bit microprocessor could be embedded into the EPLD
along with the custom high speed serial communications
channels required for communicating with the central PC
controller and the individual H-bridges. Furthermore the
use of the custom UARTs allowed non-standard length
data to be efficiently sent via the serial communications
(e.g. the A/D converters generate 12 bit data, and this data
can be sent using a single data packet.). See Section V
for information on the control algorithms implemented in
the phase leg controller.

2008 13" International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

1295

1296

<« — Cap volt
S — S serial
[¢—— input

Spy — Spy >

Erry — Errg |DI: Bridge error

Cap volt
sample
start

By : fo. f1 >

9 high Serial comms Bridge
speed Cur dir bit Altera ; ﬁ.rmg
serial NIOSii . signals
chanpels Development By : fo, /1
RS422 Board
serial
lines Eni — Eng »DO: Bridge enable
(I .
— EPLD Altera :
(Windows| , | i £: NIOSii)
4¢ clock| interface i
PC p——— 4 [4gclock Development :
DIO Board |
Low speed
i '
Seirla{ Altera !
monitoring . |
channels NIOSii |
Development !
Board :
Fig. 3. Block diagram of the control hardware.

&

The fact that all of the communications is optical
means that there is a total of 61 fibres from the phase
controller, consisting of 54 fibres to the phase leg, and
a further 7 fibres to the EPLD interface card to the
control PC. System wide there is a total of 183 fibres
involving the phase controllers. The number of fibres is
this large because of a decision to use plastic fibre. This
fibre has limited bandwidth, and was not fast enough to
allow all of the information to be transmitted to the phase
controllers and the central control PC using a single serial
communications channel in the times required. Recent
improvements in the bandwidth of plastic fibre my make
it possible to significantly reduce the number of optical
connections in the next version of the hardware.

The EPLD interface card shown in Fig. 3 has several
functions. Firstly it converts the optical serial communica-
tions from the phase controllers to RS422 signals required
for the high speed serial communications boards in the
PC. It also generates the timing for the whole system in
the form of a 4 phase clock that is distributed to all the
control system components . It also provides, via several
custom programmed EPLDs, high speed serial channels to
interface data from the voltage and current sensors in the
system. As mentioned previously, custom serial receivers
are used because the word length and data format is
different than that normally supported by conventional
UARTs.

The EPLD interface card can be interrogated by the
central PC, which is the processing unit where the main
control algorithms are executed. The central PC is an

'Equal length optical fibres are used so prevent any significant clock
skew.

2008 13" International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

industrial PC with dual Pentium Xeon processors, a high
speed RS422 serial card, and several other parallel digital
I/O cards, as well as the normal networking interfaces
available in a PC. The dual processor architecture was
used so that the main control algorithm could run under
a real-time operating system on one processor, and the
other processor could attend to non-real-time tasks such
as operator touch screen user interface, data logging,
network interface, web server access to the system, and
so on. It was felt that the Pentium processor would offer
sufficient power to execute the control at the required
rates. The use of a conventional processor, as compared
to a DSP or embedded controller, allows the code to
execute faster when written in ‘C’ because the more
general purpose instruction set of these processor is able
to produce more efficient code. In addition to this, the
Pentium processor clock speeds are far higher than DSPs,
and one is able to use floating point in all calculations
without any degradation in speed. This makes writing the
software simpler and easier to maintain.

Another significant advantage of using a standard Win-
dows XP® PC for the control computer is that the
software development tools are mature, reliable and easy
to use.

IV. SOFTWARE ARCHITECTURE

The software and control hardware architectures are
closely related. The phase controllers have a very specific
and well specified task. Therefore the approach to the
software design for this section is very simple, consisting
of a small looping executive which implements a phase
leg capacitor voltage balancing algorithm, as well as

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

desired output voltage generation using PWM. The code
for the phase controllers is written in ‘C’ to facilitate fast
coding and easy maintenance.

There were several approaches available with respect
to the software running on the central PC. One could
again use a simple looping or interrupt driven executive,
or a propriety real-time operating system, or even employ
public domain operating systems such as real-time Linux.
It was decided to use the proprietory Citrix/Ardence®
real-time extension (RTX), which allows the execution of
true real-time code whilst at the same time running Win-
dows XP®. Windows XP provides powerful resources,
such as networking access, a nice GUI environment,
access to a disk system, and a solid and well tested
software development environment.

The Ardence RTX real-time extension is not termed to
be a real-time operating system, but is a Hardware Ab-
straction Layer/kernel extension to the standard Windows
XP system that allows XP to operate as a hard real-time
system. The RTX system handles all of the interrupts, and
offers very fine process and thread priority control. The
system comes with a set of libraries that contain routines
to implement most of the normal functions of a real-
time kernel — semaphores, locks, priority inheritance and
disinheritance, and so on. In addition it has ‘C’ library
emulation modules that allow real-time performance to
be obtained when they are used. The RTX system is
designed to integrate with the Microsoft Visual C++ .NET
development environment. Code written for the system
operates at Ring O of the processor, and therefore allows
unfettered access to the hardware resources of the PC.

The Ardence RTX allows a mode of operation for
multiprocessor architectures where the RTX code runs on
one processor under the real-time kernel, and the non-
real-time Windows code runs on the other processor under
Windows XP. This approach allows a closer approxima-
tion to completely deterministic real-time performance, as
compared to running the real-time software on the same
processor as Windows XP. Testing of the RTX system
indicated that its maximum interrupt latency is extremely
low (of the order of 1usec). Given that the control period
of the STATCOM is of the order of 400usec this is more
than satisfactory.

Fig. 4 is a block diagram of the software structure for
the central PC. One can see that it is designed so that
all the software can operate either on a single physical
dual processor machine, or if need be in client/server
mode with the GUI code being executed on a separate
machine connect via a local area network or via the
Internet. This approach to the software architecture not
only offers more options in the way the system can be
physically configured, but it also decouples one section
of the system from another making software development
less complex.

In order to speed up the development process it was de-
cided to write the non-real-time parts of the system in the
interpretative high level language Python. This language
has excellent support for multi-threaded programming, a
standard GUI library based on wxWidgets, and excel-

FRONT PANEL GUI PROCESS

[
I (PEN \‘ I
’

} - 5 Iy Thl’I | }
| Vg S N NS ~_. [
7 \ I TCP/IP |
I . } Socket } |
Pt Main GUI

Main GU \
I Thread | ‘ =
[IRY N }
} \\ // ey, |
‘ ~ < _ rd -~ N
| -
I
\

Nttt A /
/"4 Lo('nlé/l\j

/ internet,
/ FRONT PANEL SERVER PROCESS connecfion|

/ T T T T T T T T T T T T T ~
rood)
/ ! —— [
=< } e S~ TCP/IP |
7 AN e Puthon baced AN Socket |
IO ython based
{UhLy thner) -) L sarver process -
| Theads A code Y, !
S } NN P ‘
| ~ - | HPy
)
\ ~ e
Shared
Memory
1Py
System
(‘C’ executable)
Fig. 4. Block diagram of the central computer software structure.

lent support for networking. In the applications where
it is being used its interpretative nature does not cause
execution speed problems. Furthermore it is reported to
generate code of approximately 1/5th of the number of
lines of other languages such as Java or C++ for the same
functionality, and therefore allows rapid development.

The real-time code, as mentioned previously, is exe-
cuted on a separate processor. However it also needs to
communicate with the non-real-time Windows side of the
system. This is implemented using a shared memory to
pass data structures between the Python code and the real-
time code. Particular attention was paid to ensure that
under no circumstances will the real-time code be held up
by this shared memory interaction. The synchronization
between the two systems is implemented using RTX
semaphore primitives.

Internally the Python processes have been implemented
with multiple threads of execution using thread safe queue
based message passing to prevent any critical section
issues. There are no common shared data structures
between the Python threads — the only interaction between
threads is via message passing. This also means that the
software threads can be developed and debugged with a
large degree of independence. This approach also makes
the addition of new features simple.

Fig. 5 is a conceptual diagram of the software for
the front panel server process. Each circle is a separate
thread in the server, and the arrowed lines indicate the

2008 13" International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

1297

To Front Panel process

[Psthon Queue object

—_

{ Reentrant

Decoder
< » /

S
Hard Disk N D=

PIRN
-~ \‘runlmv\)
Timer

Threads
N — //

Shared
Memory

Shared
Memory

Fig. 5. Block diagram of the front panel server software.

various communications paths throughout the thrreads.
As mentioned above the communications uses thread safe
Queue objects which are natively supported in Python. All
messaging passing has been organised using a “mailbox”
and address approach, so that communications can be
simply established between the various threads using the
thread address that the message has to be sent to. The
message format also contains a return address so that
acknowledge protocols can be naturally handled. The
receive thread uses a re-entrant table driven decoder to
decode the address associated with a received message so
that it can be sent from the front panel GUI process to the
appropriate thread for action. The same decoder is also
used b all the threads in the front panel server process.

The data sent via the Queue objects is serialised
Python objects (encoded in ASCII). This allows simple
communications of complex data structures between the
server threads and between the server and front panel
processes. All of the internal communications between
the threads are subject to timeouts. A “heart beat” thread
generates regular messages between the front panel server
process and the front panel GUI process so that both
processes are sure that the TCP/IP communications is
working correctly and that the other process in the system
is working. The user interface upon receipt of the heart
beat message rotates an object on the screen so that the
user has positive confirmation that the communications
between the two front panel server and GUI processes is
continuing to function. If a timeout occurs on the heart

1298

L N
_ Dget e
Ui = = (G —) + 0005

! \
! I

| T
i T |

i = oYs P U, et

Sample ix—o.5, ;.5 } 'A-*le*?(‘/k*fk 0.5) |
s o sve oosys _ poesys _sye 3|
ko5 = Bui 05 = 20201 — K070 5 — 005))
-

g sys L
Sample ix_1, 0"

Hm’z;:ilirdko Voltage balancing
monitoring
information

\ vje!, applied

| bt [.
‘ I | I I | I
k-1 k—0.5 : k+0.5 k+1

‘ T = 400usecs ‘ T = 400pusecs ‘

Fig. 6. Control timing for the central control computer.

beat, or if a timeout is violated between thread interactions
in any of the threads of the system, the STATCOM is
safely shutdown and a diagnostic message is passed via
the TCP/IP channel (if available) to the front panel GUI
process.

The optical serial communications channels also have
error checking to make sure that data received is valid.
There is a comprehensive error and warning system built
into the software so that the errors are dealt with in a
consistent way, and the system response is tailored to the
nature of the error. There is also a comprehensive error
logging system to complement this so that error data can
be analysed for diagnostic purposes.

The Python front panel server process also provides
an interface to the real-time code. This code is written in
‘C’ and physically runs on another separate process in the
dual processor control computer. Windows XP cannot see
the processor used for this process (this is hidden from
Windows XP by the Ardence RTX), and therefore has
no direct control over it. The communications between
the processors is implemented using semaphore protected
shared memory that is visible to both processors.

Python can interface directly to ‘C’ dynamic link
libraries via several different techniques, and this allows
data structures to be passed to and from the real-time
system. It is intended in the final system that these data
structures will be passed using XML so that precise
alignment of the Python data structure with a ‘C’ data
structure is not required (as would be the case if ‘C’ type
structures are passed between the two systems). These
shared memory interactions are implemented in such a
way that the real-time system can never be blocked on
the semaphore, ensuring that its real-time deadlines are
always met.

Figure 6 shows the basic timing of the system. Samples
of the currents and voltages of the system are taken
precisely at the beginning and middle of the control
cycles. There is a delay as the samples are serially
transmitted to the control computer. The control cycle
time is 7" = 400usec, which is divided into four phases,
each of 100usec duration. The real-time code is written
in ‘C’ and implemented as an event driven routine. It
is suspended pending an interrupt from one of the four

2008 13" International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

. I
| Power
+ + Imeasurement
Q_ S + © - Qs —iuv
= 1 S=iv| |

Vector
Current Voltage

i
I
I
A o
limiter | Limiter
/@\ || Peadbeat , | i
current =

T

I

I

|
Leg |4,
Voltage <
Control

voltage
lordering

I

I
I

[

|]

lu, . | Bridge

T
l
|
| o
f Ul 4Ly, VL,

Fig. 7. Block diagram of the STATCOM control system.

phase clock edges. Upon receipt of an interrupt a port
is read to check the control phase that the system is in
and the appropriate code is executed based on this. The
first two phases are concerned with receiving the sampled
currents from the current transducers, as well as receiving
monitoring information from the phase controllers. The
actual current control algorithm is executed in the third
phase of the control period (since it has to wait for
the mid control interval voltage sample to compute the
control). At the end of the third control period, the desired
voltages for the phase legs are transmitted to the phase
control processors. Therefore the phase control processors
have a little less than 100usec to execute the voltage
balancing and PWM algorithms so that the firing times
can be latched into the hardware timers that fire the power
devices before the end of the control period.

V. CONTROL ALGORITHM

The control algorithm for the STATCOM is hierarchical
in nature, following the structure of the hardware and
software that was designed to execute it. A block diagram
of the control algorithm is shown in Fig. 7. It should
be noted that the entire control algorithm operates in a
stationary reference frame.

The inner part of the control algorithm is associated
with the control of the individual bridges and phase legs.
At the lowest level this involves the control of the H-
bridge capacitor voltages. These are controlled at the
control rate — i.e. at 2.5kHz. In each control interval the
current direction is used in conjunction with the state of
charge of the H-bridge capacitors and the desired output
voltage, to determine which H-bridges will be used to
generate the desired output. This approach gives very ac-
curate balancing of the capacitor voltages, and minimises
the ripple current stress on the DC link capacitors. A
converter model is employed to remove the effects of the
diode and bulk resistance drops of the power devices.
The output voltage is made more accurate by employing
symmetrical PWM on one of the H-bridges being used to
form the output voltage.

The next level in the control algorithm is the deter-
mination of desired voltage for the H-bridge legs. The
approach taken in this STATCOM is that it operates as a

voltage controlled current source. This has the advantage
that the control provides current limiting under fault con-
ditions, and it that only instantaneous values of voltages
and currents are required for the control computations,
and does not require pre-computation of switching angles.
The current control is a dead-beat (sometimes called
predictive) current controller which is more commonly
used in variable speed drive (VSD) applications [9], [10].
These algorithms have very fast transient response and
are computationally very simple. In this implementation
of the algorithm the “back-emf” does not have to be
estimated (as is the case in the VSDs), since it is the grid
system voltage and can be measured. There is however an
issue that the grid voltage must be estimated one control
interval ahead of where the control is evaluated. This can
be seen in the control equations (see Fig. 6) where the
ﬁzy_foﬁ value is used in the development of the reference
voltage vief,. If the ©}%7) ; value is not known with
reasonable accuracy then the current will have significant
errors. A special digital phase locked loop is used to
generate these estimates, and it has the added advantage
that noise on the grid supply voltage is minimised. An
additional advantage of this algorithm is that precise
knowledge of parameters such as the connection induc-
tance are not required, and the control is dependent only
on instantaneous samples and does not rely on precise
knowledge of grid system phase. Futhermore, because of
the 2.5kHz control rate the harmonics produced are small
and the filtering requirements are minimial.

The outer control loops of the system look after the
power control. This can be divided into the real power
control, which is very important as the real power control
manages the overall voltages on the individual phase legs.
Because of issues such as lack of symmetry of the grid
supply, and the inevitable variations in the values of the
bridge components, the real power calculations are carried
out on a per phase leg basis. The net result a desired two
phase dg real power current that forms one component of
the two phase current reference for the current controller.

The other current component is associated with the
desired imaginary power that the overall control strat-
egy desires. Using the instantaneous imaginary power
expression (from P() theory) a reference imaginary power
current is generated. The combined current references are
passed to a vector current limiter, which ensures that the
desired current does not exceed the STATCOM current
limit. This limit is carried out in such a way that the real
component of the current is preserved in both magnitude
and phase (if possible), but always with respect to phase.
The imaginary power current component is limited before
the real power current, since real power control is essential
for the control of the H-bridge leg voltages. The limited
value is then passed to the dead-beat current control
algorithm to generate the reference output voltages.

VI. CURRENT STATUS

At the time of writing this paper a low voltage proto-
type of the above-mentioned system has been constructed
and is currently being tested. The power hardware used
for this low voltage prototype is based on MOSFETs.
The unit is rated to operate from a 415VAC line-to-line

2008 13" International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

1300

Fig. 8.

Photograph of the low voltage prototype STATCOM.

supply. A basic VAr compensation control algorithm has
been implemented on this prototype. The control system
hardware is the identical hardware for the 11kV prototype
system — i.e. as far as the control hardware and algo-
rithms are concerned they are sending communications
to the 11kV H-bridges. Fig. 8 is a photograph of the
low voltage prototype system. The cubicle on the left
contains the phase leg processors, the MOSFET based H-
bridge hardware, and the central control computer. The
three phase legs and their associate phase leg control
boxes are clearly visible, and the box at the top of the
cubicle is the control computer. The cubicle on the right
contains the three phase load, a California Instruments
programmable three phase power supply, and associated
contactors and circuit breakers.

Fig. 9 shows a preliminary oscilloscope trace of the
output waveforms for one phase of the prototype unit. One
can clearly see the multi-level phase voltage output, and
the current which is 90° out of phase with this voltage.
The phase leg output waveform is in phase with the
system (grid) voltage, but of less magnitude. Therefore
as far as the grid is concerned the STATCOM looks
like an inductor in this case. At the time of writing this
paper further testing is being carried out, and the control
strategies are being refined as a result of this testing. More
comprehensive results will be presented at the conference.

VII. CONTRIBUTIONS

The main contributions of this paper are:

« presentation of the overall structure and design of a
19 level cascaded H-bridge STATCOM.

o discussion of the rationale behind the design deci-
sions for the hardware, software and control algo-
rithms.

« a more detailed description of the key functional
hardware and software components of the system.

« presentation of some very preliminary output results
from the prototype STATCOM.

Generating 20VArs

30

Grid vo\iage\

Current,

Volts/Current (Amps x10)
o

Phase leg output voltage

[
Time(secs) <10

Fig. 9. Experimental result showing phase output waveforms for the
low voltage prototype system.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial
support of Australian Research Council Linkage Program
for this project.

REFERENCES

[1] B. Blazic and I. Papic, “Improved d-statcom control for operation
with unbalanced currents and voltages,” IEEE Transactions on
Power Delivery, vol. 21, no. 1, pp. 225-233, Jan. 2006.

[2] Z. Du, L. M. Tolbert, J. N. Chiasson, and B. Ozpineci, “A cascade
multilevel inverter using a single DC source,” in Applied Power
Electronics Conference and Exposition, 2006. APEC '06. Twenty-
First Annual IEEE, Mar. 19-23, 2006.

[3] H. Masdi, N. Mariun, S. M. Bashi, A. Mohamed, and S. Yusuf,

“Design of a prototype d-statcom using DSP controller for voltage

sag mitigation,” in Power Electronics and Drives Systems, 2005.

PEDS 2005. International Conference on, vol. 1, Jan. 2006, pp.

569-574.

C. Hochgraf and R. H. Lasseter, “Statcom controls for operation

with unbalanced voltages,” IEEE Transactions on Power Delivery,

vol. 13, no. 2, pp. 538-544, Apr. 1998.

[5] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: A
survey of topologies, controls, and applications,” IEEE Transac-
tions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, August
2002.

[6] C. A. C. Cavaliere, E. H. Watanabe, and M. Aredes, “Multi-

pulse STATCOM operation under unbalanced voltages,” in Power

Engineering Society Winter Meeting, 2002. IEEE, vol. 1, Jan. 2002,

pp. 567-572.

C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T. W.

Cease, and A. Edris, “Operation of 100 MVAr TVA STATCON,”

IEEE Trans. Power Del., vol. 12, no. 4, pp. 1805-1811, Oct. 1997.

[8] C. Schauder, “STATCOM for compensation of large electric arc
furnace installations,” in Power Engineering Society Summer Meet-
ing, 1999. IEEE, vol. 2, Edmonton, Alta., Jul. 1999, pp. 1109-
1112.

[9] R. Betz, B. Cook, and S. Henriksen, “A digital current controller
for three phase voltage source inverters,” Conference Record of the
IEEE-IAS Annual Meeting, pp. 722-729, New Orleans, Oct. 1997.

[10] R. E. Betz, G. Mirzaeva, and D. Pulle, “Frame alignment

stability issues in natural field orientation,” School of Electrical
Engineering and Computer Science, University of Newcastle,
Australia, Tech. Rep. V1.84, May 2007. [Online]. Available:
http://eecsbobb.newcastle.edu.au/rebetz/Reports/NFO_stability.pdf

[4

[7

2008 13" International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

Authorized licensed use limited to: University of Newcastle. Downloaded on November 17, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

